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Abstract.  

The study-at-hand discusses Wi-Fi location fingerprinting in an indoor envi-
ronment. Wi-Fi is a predestinated signal-of-opportunity which can be used 
for positioning of a mobile user as most devices nowadays incorporate a Wi-
Fi card and it is available in many buildings and public spaces. For the deter-
mination of the user location in the fingerprinting method signal strength 
observations are carried out in two phases. In the first training phase signal 
strength measurements from the visible Wi-Fi Access Points are collected to 
build-up a fingerprint database. In the following positioning phase, a user 
can be located and tracked if he carries out similar measurements and com-
pares them with the values in the fingerprinting database. For the matching 
a distance criterion is applied to obtain the best estimation of the users’ loca-
tion. In analytical form the use of nine different vector distances for such an 
approach is investigated. The selected distances included the Manhattan, Eu-
clidean, Chebyshev, Canberra, Cosine, Sorensen, Hellinger, Chi-square and 
Jeffrey vector distance. In the test bed in an office environment four multi-
ple-SSID (Service Set Identification) Wi-Fi networks existed at a physical 
single Access Point location. From the results in this investigation it could be 
seen that not the use of all signal strength measurements yields to a better 
positioning solution but the measurements to one network out of the four 
provides a better performance. The achievable positioning accuracies depend 
mainly on the selection of the vector distance and matching algorithm. Fur-
thermore, the Access Point architecture and configuration are determinant 
factors. In most tests in the selected office environment the Cosine vector 
distance provided the overall best performance followed by the Euclidean 
and Hellinger distance. Only with the Chebyshev distance significantly larger 
positioning errors occurred. In average a minimum mean distance error of 
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around 1.4 m could be achieved when using a single network in a multiple-
SSID configuration. 

Keywords. Location fingerprinting, matching algorithms, vector distance 
measures  

1. Introduction
The number of mobile applications for the processing of location data in-
creases continuously more and more. Since smartphones can receive and 
process GNSS and Wi-Fi signals the demands on availability, reliability and 
accuracy for positioning has also increased. Outdoors the accuracy can reach 
a view meters, but indoors it is usually much lower. Because GNSS signals 
can only be attenuated received in buildings, other systems had to be devel-
oped, which use the same hardware, the cellular phone. Using an existing Wi-
Fi technology, an indoor absolute positioning system can be built with little 
effort and low costs. 

In this analytical study the use of the location fingerprinting method is eval-
uated. A test area in an office environment with a regular grid of reference 
points was built therefore. At each reference point (RP) the so-called finger-
print, the unique signature of the received signal strength (RSS) of surround-
ing Wi-Fi Access Points (APs), was measured and stored in a training data-
base. In the next step, fingerprints of off-grid test points TPs were taken in 
the positioning phase. By the similarity of the fingerprints of test and refer-
ence points the position of the test points can be obtained, by using several 
vector distances and matching methods. In this study deterministic finger-
printing algorithms based on the nearest neighbour (NN), K-nearest neigh-
bour (KNN) and K-weighted nearest neighbour (KWNN) matching algo-
rithms are investigated. The estimated position is then the position of the 
fingerprint with the minimum vector distance VD. Most commonly the Eu-
clidean distance is employed for this task which is calculated for each AP in 
the positioning phase from the fingerprinting database values obtained in the 
training phase. The Euclidean distance is a special case of the more universal 
Minkowski distance. Apart from this vector distances the use of the Manhat-
tan, Chebyshev, Canberra, Cosine, Sorensen, Hellinger, Chi-Square and Jef-
frey distance are assessed. The resulting positioning performance of these 
nine different calculation variants is analyzed and compared in detail. In the 
field test site RSS measurements to six APs of four different multiple Wi-Fi 
networks (i.e., multiple-SSID (Service Set Identification) which offer differ-
ent MAC addresses at a single physical AP) and a combined database of all 
networks are available for comparison. Thereby four different user orienta-
tions were measured in the training phase and two in the positioning phase 
describing the possible movement directions of the user.  
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The paper is organized as follows: Firstly, the basics of location fingerprint-
ing are examined and summarized in section 2. It is discussed that finger-
printing is a so-called feature-based localization technology. In section 3 the 
fingerprinting matching approaches are evaluated and then in section 4 the 
suitable vector distance VD calculation variants. The field campaign set-up 
and test bed are presented in section 5 followed by a detailed assessment of 
the achieved positioning results in section 6. Finally, concluding remarks and 
an outlook on future work are given in section 7. 

2. Basics of Wi-Fi Location Fingerprinting
Location fingerprinting is a feature-based positioning method. This term was 
introduced by Niedermayr & Wieser in 2012 to describe that any type of spa-
tially varying features can be used for positioning. In contrast to common 
localization methods where usually distances, distance differences or angles 
are measured so that the coordinates can easily be computed using analytical 
geometry, the position is obtained by comparison of measured location-de-
pendent features with given reference values associated with specific posi-
tions. According to Niedermayr & Wieser (2012) the features need to fulfil 
the following requirements: (1) the signal field varies significantly with vary-
ing location (the spatial gradient should be high), (2) the field is constant in 
time or its temporal variation is predictable, and (3) the feature correspond-
ing to the field is observable and can be uniquely quantified. The major ad-
vantage of this type of positioning technology is that they do not require an 
unobstructed line-of-sight (LOS) between the mobile user and known refer-
ence points (or satellites, in the case of GNSS). Figure 1 illustrates the con-
cept of feature-based positioning.  

 

Figure 1. Operational principle of feature-based positioning 

Within this positioning procedure a feature is selected, such as the received 
signal strength (RSS) of transmitters. Using a single RSS measurement, how-
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ever, will usually not yield a unique solution. Thus, when using Wi-Fi for in-
stance, the signal power of several Wi-Fi transmitters, i.e., the hotspots or 
Access Points (APs), has to be measured at the mobile client. From the com-
parison of the measured RSS and the reference RSS stored in a database the 
position of the user can be estimated. The reference values can either be de-
rived in advance from georeferenced measurements taken during a mapping 
phase and stored in a database, or from numerical models. Commonly refer-
ence measurements are performed on a number of reference points (RPs) 
distributed throughout the area of interest in a so-called training or off-line 
phase instead of the use of simulated models (which yield usually in much 
lower positioning accuracies). A database of RSS values measured on all RPs 
is built-up during this phase. The requirement is that the location of the RPs 
has to be determined in a local (e.g. related to the building in the case of in-
door positioning) or global coordinate system (usually required for outdoor 
positioning). In the positioning or on-line phase, simply speaking, then the 
current location of the user is obtained by matching of the on-line measured 
RSS with the values in the RSS database. In other words, with the feature 
then the user’s location is estimated by matching measurements with the 
closest predetermined location fingerprints included in so-called fingerprint-
ing or radio maps (Niedermayr & Wieser, 2012; Retscher, 2016). The match-
ing methods are described in the following section 3. 

Fingerprinting was firstly employed for Wi-Fi (or WLAN) positioning with 
the system RADAR in 2000 (Bahl and Padmanabhan, 2000; Kjærgaard, 
2008). It is more robust to environmental effects on the RSS than using the 
RSS-based lateration algorithm. This is because the location fingerprinting 
algorithm constructs a search space according to the previously-measured 
RSS distributions in the radio maps. The advantage of constructing a finger-
printing database is that it can be used to consider a great number of detri-
mental effects from the surrounding environment, such as reflections and 
obstructions, into the radio maps and thus increases the accuracy for finding 
the best matching position based on RSS in the positioning phase (Retscher 
et al., 2012). Figure 2 shows an example for a radio map of a Wi-Fi AP derived 
from the training measurements using a smartphone in the test site (com-
pare Figure 5).  

The main problems in fingerprinting, however, are that the construction of a 
fine radio map leads to high workload and heterogeneous mobile devices 
measure RSS differently. Spatial interpolation techniques are usually em-
ployed for densification of the radio map and different devices are used for 
RSS measurements in the training phase to form a joint database (Retscher, 
2016). 
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Figure 2. Example of a radio map of a single Wi-Fi Access Point (AP) in the class room of 
the test site (after Retscher & Roth, 2016) 

3. Matching Approaches
The matching methods are classifications which define either which refer-
ence RSS values are incorporated into the position of the test points TPs ( ) 
– with weighting where appropriate – or which are rejected. Figure 3 illus-
trates the principle idea for the definition of the distance relationship be-
tween the DB of the training phase and the positioning phase (Retscher & 
Hofer, 2016). In the simplified case shown here RSS scans are measured to 
three APs (AP 1, 2 and 3) from two test points TP 1 and 2. The allocation of 
the positioning scans with the fingerprints in the DB is specified regarding to 
their corresponding minimum distance. In other words, the one that has the 
minimum vector distance VD is determined as the estimated location accord-
ing to the selected distance of each training location. In the shown case then 
the scan is allocated to TP 1.   

Figure 3. Allocation of RSS scans in the positioning phase to the training fingerprinting da-
tabase DB (after Retscher & Hofer, 2016) 
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In this study only deterministic fingerprinting algorithms based on the near-
est neighbour (NN), k-nearest neighbour (KNN) and k-weighted nearest 
neighbour (KWNN) matching algorithms are investigated. These are the 
most commonly employed algorithms and have been introduced by Bahl and 
Padmanabhan (2000). Their principle is briefly described in the following.  

3.1. Nearest Neighbour (NN)
In this algorithm the distance vector  which contains the respective vector 
distances to all RPs ( ) is defined. Afterwards the minimum is 
determined and the coordinates are assigned to the TP as given in the follow-
ing mathematical relationship:  

��� ��� ����

with  where  is the coordinate vector of .  

3.2. K-Nearest Neighbour (KNN)
In case of the KNN method a weighting of the nearest neighbours is per-
formed. Thereby the weights are evenly split around the  RPs to be used 
and afterwards the coordinates  are multiplied by the respective weighting 
factor  and are divided by the sum of all . The weighting factor  is the 
weighting from  described in the form: 

(2)

with  

(3)

Huang (2014) discusses that the accuracy increases if a  value of up to 10 in 
maximum is used and then it decreases again. That’s why the calculation was 
carried out in this work with  values up to 10. The empirical determination 
revealed that  led to the best result (see Figure 7 in section 6.2). 

3.3. K-Weighted Nearest Neighbour (KWNN)
For this method a weighting  is calculated in dependence of the respective 
vector distance :  
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where is the fingerprint from  and  is the fingerprint from .  

Similar as in the KNN method  is calculated from equation (3) to obtain the 
coordinate vector.  

3.4. Positioning Accuracy
The most important aspect in the analysis and assessment of a localization 
method is the achievable positioning accuracy. Apart from the requirement 
to achieve acceptable positioning accuracies, of course also the performance 
and the costs have to be considered. In the following, it is briefly summarized 
how the positioning accuracies in the analyses in this study are defined and 
characterised.  

Usually, the Mean Square Error MSE is employed to describe the achievable 
positioning accuracy. Universal is valid:  

(5)

with . 

From it follows: 

(6)

and further of the Root Mean Square Error (RMSE):  

. (7)

Because it concerns, in this context, the distance error of the ascertained co-
ordinates of the  of the corresponding test points TPs respective their true 
coordinates , the error definition  becomes – as in preceding 
literature (see e.g. Moghtadaiee & Dempster, 2015) – the distance error DE 
at further down as:  

. (8)

To obtain the mean distance error (short: MDE) an average over all TPs is 
calculated as given in equation (9):  

. (9)

With equations (5) up to (9) all error measures are defined which are used in 
the analyses in this study. In the following, the application of the matching 
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approaches in combination with different vector distances VD is discussed in 
more detail.  

4. Vector Distance Calculation Variants
The following derivations of the different vector distances VD are based on 
the similarity relation of vectors. For the derivation of the different VDs the 
RSS vector  of a measurement point is described in its universal form:  

containing the values to all visible APs whereby the variable  
describes the elements of the vector , namely the averaged RSS values for 
each AP. p is therefore the number of APs. 

Several different approaches are possible to derive VDs (see e.g. Machaj & 
Brida, 2011 or Moghtadaiee & Dempster, 2015). In the following, the deriva-
tions are started with the universal Minkowski distance which then leads to 
three special cases of this VD. Furthermore, six other VDs are introduced 
which are used in the comparing performance analysis in this study.  

4.1. Minkowski Distance
The following equation describes the universal Minkowski distance :  

�

where  is the  of the fingerprint  measured in the positioning 
phase on the test point to be positioned,  the  of the fingerprint  
measured in the training phase on the reference point,  the norm parameter 
and  is the norm  between two points. The following three vector distances 
are defined by change of the norm parameter .  

4.2. Manhattan Distance
By choosing  for the norm parameter in the Minkowski distance for-
mula, one receives the Manhattan distance . This VD represents the dis-
tance between two points in a right-angled grid (see the two distances in Fig-
ure 4 with the same length) and is also called city-block distance, boxcar dis-
tance or taxicab distance. This VD is used for the calculation of the distance 
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between two buildings (or crossroad points) in grid-shaped cities, such as in 
Manhattan, New York – hence the name Manhattan distance (Krause, 1986). 
The Manhattan distance  results in the following equation: 

. (12)�

Figure 4. Illustration of two examples for the Manhattan distances with same length 
(brown lines) and the Euclidean distance (dotted green line) (after Favre-Bulle P, 2015) 

4.3. Euclidean Distance
The Euclidean distance  is the most common used vector distance and de-
scribes the distance of the shortest direct path between two points in the Eu-
clidean space. This VD is also a special case of the Minkowski distance if a 
value of 2 is used for  Then  can be derived from in the form: 

. �

4.4. Chebyshev Distance
By setting  within formula (11) describing the Minkowski distance, the 
Chebyshev distance  is derived. This derivation is also called maximum 
value distance calculation and determines the maximum absolute difference 
between the two vector pairs  and . Then  can be described by the 
following formula:  

4.5. Canberra Distance
The Canberra distance  is similar to the Manhattan distance , however, 
the distance is weighted by the sum of the absolute values. Every summand 
of  has therefore a value between 0 and 1. The mathematical relationship 
is given by: 

. �
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4.6. Cosine Distance
The Cosine distance  describes rather the similarity between two vectors 
than a distance. The right term in equation (16) can have a value between -1 
and 1. The higher the value, the more alike are the two vectors. By the deduc-
tion of this term by 1, one can interpret the result as a VD.  

. �

4.7. Sorensen Distance
The Sorensen distance, also called Bray Curtis distance, is another derivation 
of the Manhattan distance , where its value is normalized. Then all values 
are positive and lie between 0 and 1. In case of ,  which means 
that there are two equal vectors. The mathematical relationship is:  

. (17)�

4.8. Hellinger Distance
For this distance the norm from the square roots of the fingerprint vectors  
and  is used divided by . This results in: 

. (18)

4.9. Chi-square Distance
The Chi-square distance is similar to the Euclidean distance  but is 
weighted by a factor  and therefore defined as: 

. (19)

4.10. Jeffrey Distance
Finally, for the Jeffrey distance also  is used and then the VD has the form:  

(20)

Apart from the Minkowski distance these nine vector distances VDs are ana-
lysed regarding their performance and achievable positioning accuracies. 
The following section 5 describes first the indoor test bed and section 6 the 
major results of the campaign.  
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5. Indoor Testbed and Measurements
The indoor test bed is located on the ground floor of a multi-storey office 
building of the TU Wien – Vienna University of Technology. Figure 5 shows 
the location of the 93 reference points RPs (illustrated as black dots) distrib-
uted in a regular grid with spacing of around 2.5 m between the grid points 
and the randomly selected six test points TPs (blue dots). The RPs cover 
mainly three different areas, i.e., parts of a class room in the upper left area, 
an area with desktop computers in the upper right part and the foyer in the 
lower part of the test site. The distribution of all six visible Access Points APs 
CDEG-1 to -6 (indicated as red triangles) is also shown in the Figure. Figure 6 
givens some impressions of how the test bed looks like. As can be seen in the 
left Figure 6, an entresol exists in the foyer whereby the maximum ceiling 
height is 5 m.  

Figure 5. Distribution of reference points RPs (black dots), test points TPs (blue dots) and 
Access Points APs (red triangles) in the indoor test bed 

The three different areas in the test bed have been chosen to provide different 
conditions for Wi-Fi signal propagation regarding damping and shielding of 
the radio signals. An other specific feature of the test bed is that in total four 
different Wi-Fi networks are provided. Besides, these consist of the network 
eduroam, tunet, tunetguest and wlanipsec. These networks are so-called 
multiple-SSID (short for Service Set Identifier) Wi-Fi networks. In this case 
several networks at a physical AP location and a single transmitter as offered. 
In other words, there are four Wireless Local Area Networks (WLANs) (1, 2, 
3 and 4) with native as 1 and mapping to 4 different SSIDs (one, two, three 
and four) on any of the six APs receivable throughout the whole test bed. A 
different encryption for the networks is usually applied. On overview about 
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the characteristics of the four networks is given in Table 1. As can be seen the 
networks are either encrypted or not. With this set-up the rights are defined 
how a user may access the Wi-Fi network. Therefore, each network adapter 
needs his own MAC address. Thus, RSS to 24 different MAC addresses could 
be measured. Additional RSS measurements to other visible APs in this area 
were omitted as they could not be received on the majority of the TPs. The 
measured RSS ranged between -64 to -85 dBm (see section 6.1 for further 
details). 

 

Figure 6. Impressions from the indoor test bed showing the foyer on the right and the class 
room on the left 

 
SSID Characteristics 

eduroam Network for students, staff and participants of this international network  

tunet 
Network for students and staff as well as visiting scholars and conference 
participants. The network is encrypted. 

tunetguest Alternative for network tunet, not encrypted.  

wlanipsec 
Network only for staff of TU Wien while using a VPN (Virtual Private Net-
work) connection.  

 
Table 1. Overview of the characteristics of the four different multiple-SSID networks visible 
in the test bed 

6. Discussion of Evaluation Results
In this section the major results of the investigations are presented. At the 
beginning of this section general aspects are briefly mentioned and the meas-
urement results and corrections for fingerprinting are discussed in the fol-
lowing. Here the empirical determination of the optimum value for K in the 
matching approach is elaborated first followed by a detailed discussion of the 
achieved distance error DE and the mean distance error MDE. The calcula-
tions were performed with newly developed MatLab routines (Joksch, 2016).  
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6.1. General aspects
In the training phase of the fingerprinting approach RSS scans on in total 93 
reference points RPs (compare Figure 5) were measured in four different 
user orientations aligned to the axes of the building. The main reason for 
measuring in four different orientations is that the Wi-Fi signals are signifi-
cantly shielded by the human body of the observer if he is located between 
the AP and the mobile device. For the evaluation, however, only an average 
over all four orientations was used. The measured RSS values  are 
averaged on each RP per SSID using the following relationship:  

where  are the measurements m of the RSS to  on  and is 
the number of measurements to  on . 

The averaged values have then been summarized in the fingerprint vector 
on each  in the form: 

 

Also on the six test points TPs scanned in the positioning phase the measured 
RSS values were averaged as given in:  

where  are the measurements m of the RSS to  on  and is 
the number of measurements to  on . 

Again the averaged values are included in the fingerprint vector on each 
: 
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As an example Table 2 presents the fingerprint vectors for the AP CDEG-1 
with the four multiple-SSID networks measured on the six test point TP 1 up 
to TP 6. When looking at the RSS values of the four different networks, i.e., 
eduroam, tunet, tunetguest and wlanipsec, it can be seen that the RSS values 
are quite similar and the variations are low compared to short-time fluctua-
tions of the RSS in the test bed as reported by Retscher & Roth (2016) and 
Retscher & Tatschl (2016a). Also a significant difference in RSS values on the 
six different TPs can be seen. This is advantageous for positioning using fin-
gerprinting as the fingerprints should be unique on each user locations 
throughout the test site. For the AP CDEG-6, however, the RSS difference on 
five of the six TPs is much smaller. It only varies between -65 to -72 dBm. 
Only the measurements on TP 6 are different with a value of around -80 dBm 
(see Joksch, 2016 for further details). Then it would be more difficult to esti-
mate the correct user’s location if only this single AP would be used. In addi-
tion, only on two test points, i.e., TP 5 and 6, no signal could be received from 
AP CDEG-2. This two TPs are located in the class room and on these locations 
the Wi-Fi signal of AP CDEG-2, which is outside quite far away (compare 
Figure 5), was shielded due to the walls and their structure for the whole du-
ration of the field campaign. In this case where no RSS signal can be received 
a value of -99 dBm is assigned in the fingerprinting vector. 

SSID TP 1 TP 2 TP 3 TP 4 TP 5 TP 6 

eduroam -84.0 -81.0 -68.0 -65.0 -56.4 -62.8 

tunet -85.0 -81.5 -68.2 -64.5 -56.0 -63.0 

tunetguest -85.0 -80.4 -66.5 -66.5 -56.0 -64.5 

wlanipsec -82.5 -80.8 -67.5 -65.3 -55.3 -63.0 

Table 2. Example for RSS values in [dBm] in the fingerprint vector of one AP CDEG-1 for 
the four different multiple-SSID networks on the six TPs 

 
6.2. Determination of the K-Value for the Matching Method
For the empirical determination of the optimum value for K for the K-nearest 
neighbour (KNN) or K-weighted nearest neighbour (KWNN) matching algo-
rithm (see section 3.2 and 3.3 respectively) the Euclidean distance is calcu-
lated where all RSS measurements of the four multiple-SSI networks were 
utilized. As can be seen from Figure 7 the results do not follow the theoretical 
relationship described in section 3.2. On account of the minimum for a MDE 
of 2.24 m with , this value is selected for the further evaluation in this 
study. 
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Figure 7. Progression of the MDE in [m] for rising K-values from 1 to 10 (minimum obtained 
K-value of 3 is highlighted in red) 

6.3. Vector Distance Results Comparison
The different vector distances VDs described in section 4 in combination 
with the matching approaches NN, KNN and KWNN are calculated for every 
of the six TPs within every SSID network. Then in the following, the VDs were 
sorted in dependence of their dimension and the usable distances were taken. 
As described in section 3.1 to 3.3, the correct value is the first one for the NN 
and the first three values for KNN and KWNN method. Afterwards the posi-
tions  are calculated using the relationship  for the NN 
where  is the coordinate vector of  and respectively equation (3) in the 
case of the KNN and KWNN matching approach.  

In the next step, the resulting distance errors (DE) and mean distance errors 
(MDEs) calculated with equations (8) and (9) given in section 3.4 of the four 
different multiple-SSID networks were analyzed. Table 3 presents the DEs in 
the four different SSID networks and in total whereas Table 4 summarizes 
the MDEs in the SSID network eduroam of all six TPs for each of the nine 
VDs introduced in section 4. As can be seen from Table 3 if one looks at the 
column of the total DE, the minimum DE of around 0.30 m is achieved for 
the Euclidean and Hellinger VDs. Furthermore, these two VDs do not result 
in the largest DE. The maximum DE of 8.96 m occurs when using the Che-
byshev VD in the SSID network tunetguest.  

In general, the lowest overall DE occurred in the eduroam network. Thus, in 
the following only results in this SSID network are presented. Further results 
concerning the MDE and the four SSID networks are presented in Retscher 
and Joksch (2016) and have proven that the eduroam network is the one to 
be chosen. Here it could be seen that the smallest MDE in eight of nine cases 
occurred. Thereby the smallest MDE is achieved four times for the KWNN 
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matching approach where K was set to 3. For all vector distances the largest 
MDEs in the eduroam network was obtained if the NN approach is employed. 
This can also be observed if one looks at Table 4 and Figures 8 to 10. The 
difference between the smallest MDE and the largest is about 1.10 m (range 
of 1.40 to 3.50 m). The use of the Cosine distance resulted in a MDE of 1.39 m 
for the KNN and 1.40 m for the KWNN. The next best results with differences 
of only 2 to 3 cm was achieved with the Euclidean and Hellinger distance. 
The Chi-square and the Jeffrey MDE differs only by 8 cm. Also the results 
with the Manhattan, Sorensen (MDE 1.67 m) and Canberra distance (MDE 
1.88 m) lie under the overall MDE of 1.90 m using the KWNN matching ap-
proach. With the Chebyshev distance the worst result with a MDE of 2.42 m 
was achieved. 

Table 4 presents the MDEs separately for each of the six test points TP 1 to 
TP 6 in the eduroam SSID network. The smallest MDE resulted in only 
0.43 m on TP 6 using the Cosine, Chi-square and Jeffrey VD and the KWNN 
matching approach. The MDE of the Euclidean distance was slightly higher, 
i.e., 0.58 m. This cannot be seen as a significant difference as the localization 
accuracy of Wi-Fi fingerprinting is usually not that high. If one looks at Fig-
ures 8 to 10, however, it can be seen that positioning accuracies can be 
higher, i.e., on the half meter level, than what usually is achieved in many 
tests reported in the literature. Qualifying it must be mentioned that the per-
formance and achievable positioning accuracies depend very much on the 
environment and the signal propagation conditions during the measure-
ments. It is always reported that the repeatability might be a problem. A suit-
able strategy to retrieve this situation might be the use of continuously rec-
orded RSS measurements in the area of interest. Retscher and Tatschl (2016a 
and b) have developed a differential Wi-Fi positioning approach where RSS 
scans are performed on selected points in the test bed. This points are 
equipped with low-cost Raspberry Pi’s serving as reference stations as it is 
done in a differential GNSS network. Then it is possible to derive corrections 
in real-time which are applied by the mobile client.  

6.4. MDE Comparison for Euclidean and Cosine VD
Figures 8 to 10 provide a graphical representation of the positioning accura-
cies for each TP when using the Euclidean and Cosine VD. As can be seen the 
results can be quite different. In general, the KNN and KWNN matching ap-
proaches outperform the NN approach. The resulting positioning errors lie 
in the range of around 0.40 up to 5.40 m (compare Table 4). The best result 
is obtained on TP 5 in this range using both VDs and KNN and KWNN ap-
proach. This test point is located in the class room (compare Figure 5). On 
the other hand, the worst result is achieved under the entresol in the foyer 
where TP 1 is located using the NN algorithm.  
 

LBS 2016

Page 68



  eduroam tunet tunetguest wlanipsec total 

 

 min max min max min max min max min max 

M
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h
a

tt
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n
 NN 1.27 5.38 1.27 5.38 1.27 5.38 1.27 6.83 1.27 5.38 

KNN 0.60 2.99 0.95 4.67 0.60 7.20 0.60 4.67 0.60 4.67 

KWNN 0.55 3.01 1.16 4.87 0.71 7.83 0.63 4.79 0.66 4.72 

E
u

c
li

-

d
e

a
n

 NN 1.27 5.38 1.27 5.38 1.27 5.38 1.79 6.46 1.27 4.57 

KNN 0.42 2.46 0.42 3.90 1.74 7.20 0.42 5.49 0.42 5.49 

KWNN 0.35 2.57 0.32 3.49 1.59 7.73 0.33 5.48 0.31 5.18 

C
h

e
b

y
-

s
h

e
v

 NN 1.27 6.46 1.27 4.57 1.27 8.96 1.79 6.46 1.79 6.34 

KNN 0.60 4.67 0.42 3.90 1.34 4.35 2.15 7.20 0.42 5.56 

KWNN 0.73 4.69 0.34 3.72 1.39 4.72 2.13 7.654 0.35 5.57 

C
a

n
-

b
e

r
r

a
 NN 1.27 5.38 1.27 5.38 1.27 5.38 1.27 6.83 1.27 5.38 

KNN 0.95 2.99 0.95 4.67 0.60 7.20 0.60 4.67 0.60 4.67 

KWNN 0.54 3.03 1.11 4.921 0.72 7.76 0.62 4.82 0.68 4.70 

C
o

s
in

e
 NN 1.27 5.38 1.27 5.38 1.27 5.38 1.79 6.46 1.79 4.57 

KNN 0.42 2.46 0.42 3.90 1.74 5.49 0.42 5.49 0.60 5.87 

KWNN 0.43 2.68 0.59 3.02 1.30 4.01 0.29 5.48 0.82 5.62 

S
o

r
e

n
-

s
e

n
 NN 1.27 5.38 1.27 5.38 1.27 5.38 1.27 6.83 1.27 5.38 

KNN 0.60 2.99 0.95 4.67 0.60 7.20 0.60 4.67 0.60 4.67 

KWNN 0.55 3.01 1.16 4.87 0.71 7.83 0.63 4.80 0.67 4.72 

H
e

ll
-

in
g

e
r

 NN 1.27 5.38 1.27 5.38 1.27 5.38 1.79 6.46 1.27 4.57 

KNN 0.42 2.46 0.42 3.90 1.74 7.20 0.42 7.20 0.42 2.99 

KWNN 0.35 2.59 0.30 3.55 1.61 7.67 0.32 7.76 0.30 3.08 

C
h

i-

s
q

u
a

r
e

 NN 1.27 5.38 1.27 5.38 1.27 5.38 1.79 6.46 1.27 4.57 

KNN 0.42 2.46 0.42 3.90 1.74 7.20 0.42 7.20 0.42 2.99 

KWNN 0.43 2.72 0.53 3.21 1.43 8.16 0.27 8.33 0.42 3.17 

J
e

ff
r

e
y

 NN 1.27 5.38 1.27 5.38 1.27 5.38 1.79 6.46 1.27 4.57 

KNN 0.42 2.46 0.42 3.90 1.74 7.20 0.42 7.20 0.42 2.99 

KWNN 0.43 2.72 0.53 3.21 1.43 8.16 0.27 8.33 0.42 3.17 

 

Table 3. DEs in [m] in the four different SSID networks and in total for the different VDs 
Green marked values indicate the minimum DE and red the maximum DE of each vector distance VD.  
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 TP 1 TP 2 TP 3 TP 4 TP 5 TP 6 

M
a

n
-

h
a

tt
a

n
 NN 5.38 1.79 4.01 1.79 4.60 1.27 

KNN 2.99 2.15 2.46 0.60 1.52 0.95 
KWNN 3.01 2.21 2.56 0.61 1.07 0.55 

E
u

c
li

-

d
e

a
n

 NN 5.40 1.79 4.01 1.79 4.57 1.27 
KNN 2.15 2.15 2.46 0.60 0.42 0.95 
KWNN 2.21 2.19 2.57 0.63 0.35 0.58 

C
h

e
b

y
-

s
h

e
v

 NN 1.79 4.01 6.46 1.79 4.57 1.27 
KNN 3.64 2.15 4.67 0.60 2.83 0.95 
KWNN 3.55 2.22 4.69 0.76 2.58 0.73 

C
a

n
-

b
e

r
r

a
 NN 5.38 4.01 4.01 1.79 4.57 1.27 

KNN 2.99 2.15 2.46 1.79 1.52 0.95 
KWNN 3.03 2.22 2.62 1.76 1.11 0.55 

C
o

s
in

e
 NN 5.38 4.01 4.01 1.79 4.57 1.27 

KNN 1.79 2.15 2.46 0.60 0.42 0.95 
KWNN 1.91 2.25 2.68 0.65 0.48 0.43 

S
o

r
e

n
-

s
e

n
 NN 5.40 1.79 4.01 1.79 4.57 1.27 

KNN 2.99 2.15 2.46 0.60 1.52 0.95 
KWNN 3.01 2.21 2.56 0.61 1.07 0.55 

H
e

ll
-

in
g

e
r

 NN 5.38 4.01 4.01 1.79 4.57 1.27 
KNN 2.15 2.15 2.46 0.60 0.42 0.95 
KWNN 2.22 2.22 2.59 0.64 0.35 0.57 

C
h

i-

s
q

u
a

r
e

 NN 5.38 4.01 4.01 1.79 4.57 1.27 
KNN 2.15 2.15 2.46 0.60 0.42 0.95 
KWNN 2.30 2.30 2.72 0.68 0.44 0.43 

J
e

ff
r

e
y

 NN 5.38 4.01 4.01 1.79 4.57 1.27 
KNN 2.15 2.15 2.46 0.60 0.42 0.95 
KWNN 2.30 2.30 2.72 0.68 0.44 0.43 

 

Table 4. MDEs in [m] in the SSID network eduroam of all six TPs for the different VDs 
Green marked values indicate the minimum MDE and red the maximum MDE of each vector distance 
VD. The underlined values are the smallest MDE. 
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Figure 8. Comparison of the positioning errors in the eduroam network for TP 1 and TP 2 
for the Euclidean and Cosine vector distance VD and NN, KNN and KWNN matching ap-
proach 
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Figure 9. Comparison of the positioning errors in the eduroam network for TP 3 and TP 4 
for the Euclidean and Cosine vector distance VD and NN, KNN and KWNN matching ap-
proach 
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Figure 10. Comparison of the positioning errors in the eduroam network for TP 5 and TP 6 
for the Euclidean and Cosine vector distance VD and NN, KNN and KWNN matching ap-
proach 
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6.5. Discussion of the Major Outcome
For the assessment of the quality of positioning using Wi-Fi fingerprinting 
the distance errors DEs and mean errors MDEs were analyzed. It was found 
that one network should be selected if multiple-SSID networks are existing. 
In the building of TU Wien where four multiple-SSI networks are provided 
the network eduroam resulted in the best positioning accuracy and perfor-
mance. It is not recommended to average over all existing networks. This 
would lead to a false weighting of the observations.  

If one looks at the results using the nine different vector distances VDs which 
were investigated no significant differences between most of them are found. 
Thus, it cannot be recommended in general, which VD should be chosen as 
the right selection depends very much on the surrounding environment and 
the present interference conditions affecting the propagation of the Wi-Fi 
signal. The most commonly employed Euclidean distance in fingerprinting 
showed no significant MDE difference to the slightly better performing Co-
sine vector distance (see also Retscher & Joksch, 2016). Figures 8 to 10 have 
shown that the resulting positions on the TPs obtained with the KNN and 
KWNN are mostly the closest to the true l0cation of the TP. The DE is then 
around half a meter. Only the NN positions are further away from the true 
location. 

7. Concluding Remarks and Outlook
Current investigations are focused on the additional integration of continu-
ous long-time measurements to consider temporal and spatial signal varia-
tions of the Wi-Fi signal propagation. A concept and first test results of using 
reference stations which continuously scan and measure the RSS of the sur-
rounding APs are presented in Retscher & Roth (2016). Another possibility 
to increase the performance of fingerprinting is the additional use of the com-
pass data from the smartphone sensors and an orientation dependent finger-
printing DB.  

Apart from the standard deterministic fingerprinting approaches further on-
going investigations are considering probabilistic approaches (see e.g. 
Honkavirta et al., 2009). The Mahalanobis distance is a suitable VD in this 
respect and has been tested by Ettlinger & Retscher (2016) for a combination 
of Wi-Fi positioning with fingerprinting using present ambient geomagnetic 
fields. In this case, the nearest neighbours are determined by using condi-
tional probabilities.  

Further future work concerns performance tests in 3D environments using 
Wi-Fi fingerprinting with the different vector distances. Field tests reported 
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in the paper from Retscher and Hofer (2016) were performed in the same 
office building where 3D scenarios, such as the navigation of a mobile user 
from the building entrances to an office in the third floor, have been tested. 
In the evaluation only the Euclidean distance and the NN approach have 
been used so far and a combined solution of all four available multiple-SSID 
networks. Thus, in the further analysis it should be focused on the eduroam 
SSID network with an eventual usage of the KNN or KWNN approach.  

Integration with the inertial sensors embedded in the smartphone is also a 
promising strategy. If the measurements of the accelerometer and gyroscope 
are used continuous positioning and navigation via dead reckoning (DR) is 
possible. In this case, the drift of the inertial navigation sensors can then be 
compensated if a Wi-Fi positioning solution is available. Furthermore, in DR, 
for instance, the step length is adapted if the user climbs stairs or uses an 
elevator as identified by the Wi-Fi absolute positioning system. Retscher & 
Hofer (2016) have demonstrated that this strategy is the right direction for 
localization of mobile devices. Furthermore, the additional use of the baro-
metric pressure sensor which can nowadays be found in many smartphones 
is also planned. Then an additional determination of the altitude of the user 
is possible (see Retscher, 2007 for further details and processing strategy).   
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