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Multi-modal Route Planning

Introduction

Ajourney from Ato B

Walk, Car, Bike,
Public Transport
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Multi-modal Route Planning I

Introduction

Ao/\D\OO\/B

Ajourney from Ato B

Walk, Car, Bike,
Public Transport

Carpooling? Carsharing? Bikesharing?
Ride-hailing? Bus-on-demand?
An arbitrary combination?
Personalization?
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Multi-modal Route Planning

Difficulties

Car runs on Street Network Public Transport runs between Stops

Every point is reachable Only certain «transfer nodes» are reachable
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Multi-modal Route Planning

More Difficulties

« Richer user profiles lead to computationally
expensive grapns and edge weights.

« Weight coefficients are not well-suited for
representing hard restrictions.

« Traditionally, all possible paths taken into
consideration by the routing algorithm.

« System adaption to new requirements
difficult.
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Multi-modal Route Planning

Transport Layers

Link / Map to nodes and areas
(areas are important for, e.g.,
carpooling, because pickups
can happenin an area)

Carsharing, Taxi

Carpooling

Public Transport (+live offsets)

Street
Public Transp. Infrastructure
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Multi-modal Route Planning

Transport Layers

Link / Map to nodes and areas
(areas are important for, e.g.,
carpooling, because pickups
can happenin an area)

Carsharing, Taxi

Carpooling

Public Transport (+live offsets)

Street
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Multi-modal Route Planning ‘

Difficulties

A large dynamic graph of heavily interconnected nodes

Taxi

Train

/' Car
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Multi-modal Route Planning ‘

Difficulties

A large dynamic graph of heavily interconnected nodes

Taxi
Time «unrolling» \‘\
into a lot of states \ ‘ o

oy ST
ey,
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Multi-modal Route Planning

Two Steps

@ Use dynamic «transfer graph» to @ Compute feasibility of trip legs

compute possible multi-modal using a conventional route
routes from Ato B planner for the respective mode
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Multi-modal Route Planning

Rule Base for Transport Modes e

Rules (cf. agent planning)
Olcondition] = M|condition] = D[condition]: [outcomes]

Example: Drive a Bike

Aluser|bikelLocation] = A] = BIKE[context|weather] I= "rain’] = BlbikeParking = true]:
userlbikeLocation] = B, user|distBiked] += dist(A, B)
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-modal Route Planning

Algorithm
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Multi-modal Route Planning

mplemented

Rules

Rules for Walking, Biking, Driving,
using Public Transport, Carsharing,

Carpooling, Bikesharing

Integrating personalized constraints,
contextual factors, mode-dependent

restrictions

Table 1 A selection of rules implemented in our prototype system

Mode Rule Description

Walk d,. = user[distWalked] + distiA, B) Every node provides walking,
Af@] — WALK[(d,. < user however, a user can only walk up to a
[maxDist]) and (NOT context maximal distance (which gets
[rainyWeather] OR (d,, < user decreased if it is raining), and if the
[maxDistRain])) and (context current time is within an accepted
[eurrentTime] IN user time interval for walking. As a result
[acceptableTimelntviWalk )] of walking, the total walked distance

— B[@]: is updated as well as the context

user(distWalked += distiA, B)],
context{time += time(A, B)]

Bike Aluser[bikeLocation] = A] — BIKE A user can only take the bike, if her
[{NOT context{ rainyWeather]) AND bike currently is at the location.
(comtext currentTime | IN user Further, the destination needs to have
[acceptableTimelntviWalk])] — B a bike parking spot available.
[bikeParking = true|: user Conceming contextual variables
[bikeLocation] = B, user{distBiked] similar to walking
+= dis{{A, B), context[time += time
(A, B)]

Car Aluser[carLocation] = A] — CAR Taking the car is only possible from
[¢] — Bf#parkingSpots > 0]: user the location where the user currently
[ecarLocation] = B, context[time has parked her car to locations with a
+= time(A, B)] parking spot available. As a result, the

car is at location B

Train AfconnectsLineX = true] — TRAIN Similar to bus
[e#] — BfconnectsLineX = truej:
[@#], context{time += time(A, B)]

Tram AfconnectsLineX = true] — TRAM Similar o bus
[¢] — BfconnectsLineX = truej:
(@], context{time += time(A, B)]

Carshare AfcarSharing = true, Carsharing is possible from
#cars > 0] - CARSHARE([¢] — B carsharing locations, where enough
[#parkingSpots > 0]: Af#cars cars are available. The destination
— = 1], context{time += time(A, B)] needs to have free parking spots

Carpool Afintersects(A, Carpooling is possible from locations
C) = true] — CARPOOL[p] — A that intersect with a spatio-temporal
[intersects(B, D) = true]: [¢] comidor of a carpooler

Bike-Share | AfbikeSharing = true, Bikesharing is possible from

#bikes > ()] — BIKESHARE
[context{weather] ! = “rain”] - B
[bikeParking = true]: Al#bikes

— = 1], user[distBiked] += dist(A,
B), context{time += time(A, B)]

bikesharing locations, where enough
bikes are available




Multi-modal Route Planning

Benefits

The heuristic only has to consider a graph
consisting of transfer nodes (mostly public
transport stops).

For validation of individual route segments,
only the respective sub-graphs have to be
queried.
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Multi-modal Route Planning

Example Outputs
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Multi-modal Route Planning

Example Outputs
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Multi-modal Route Planning

Example Outputs

Not afraid during the night
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Multi-modal Route Planning

Conclusions

We can bulid a dynamic graph «on the fly»,
and use it to compute multi-modal route options.

We can integrate personalized preferences,
and quickly update the respective rules.

The heuristic can be expanded to include for
example points of interest, as intermediate stops.
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