

A Hidden Markov Model for Indoor Tracking Based on Bluetooth Fingerprinting and Grid Filtering

BS 2016 13th Conference on Location-Based Services Vienna, 14–16 November 2016

alastatu lithili haladada

Xingyu Zheng,Yi Long,Yong Shi,Yue Xu School of Geography Science NanJing Normal University China

Outline

- Background
- Introduction of Fingerprint-based location
- Methods and Algorithms
- Experiments
- Conclusion

Background

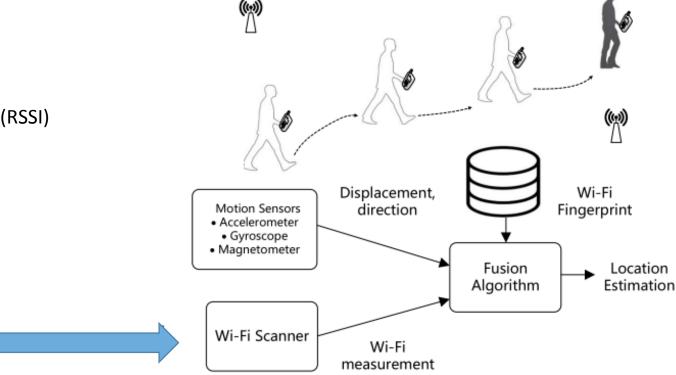
➢Indoor Pedestrian Navigation :

- Oriented "human "services
- Indoor High similar pedestrian
- The Complexity of indoor environment
- High demand of real-time

Train station

Museum

Tourist



alantala lathala haladalat

Techniques for Positioning/Location Tracking

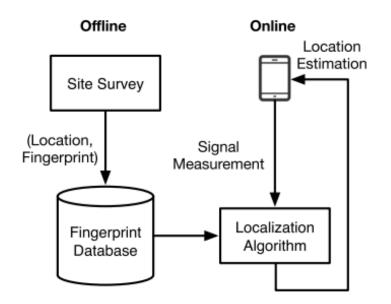
♦ Measurement types

- ➤ Time of arrival (ToA)
- Time difference of arrival (TDoA)
- Angle of arrival (AoA)
- Received signal strength indicator (RSSI)
- Location estimation methods
- Cell of origin (CoO)
- Distance-based e.g., trilateration
- > Fingerprinting
 - e.g pattern regnition

Challenge: the balance with the accuracy and efficiency

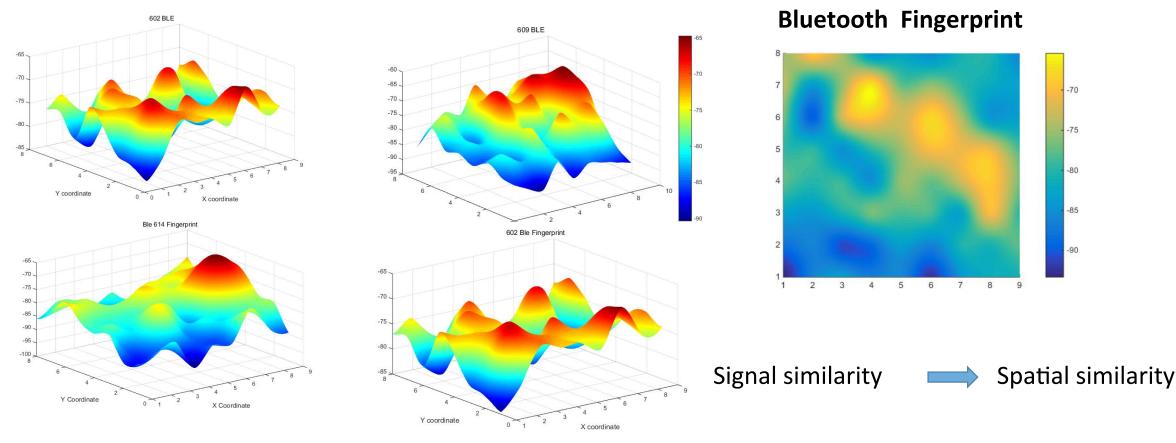
BS 2016 13th Conference on Location-Based Services Vienna, 14–16 November 2016

alanala la hala hala hala hala hala


Introduction of Fingerprint-based Location

Fingerprint method is RSS-based localization
Probabilistic ,e.g.,

- **Bayesian** (x|y) = p(y|x)p(x)/p(y)**Deterministic, e.g.,**
- Nearest Neighbor

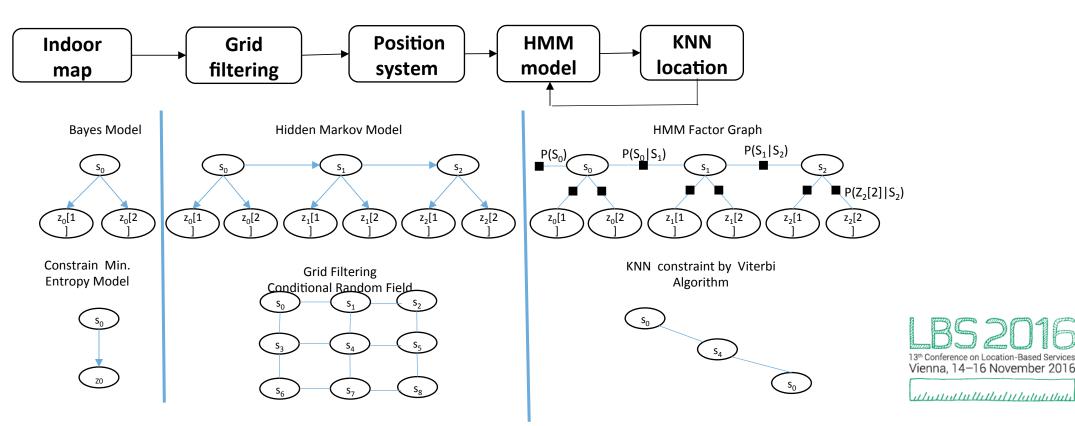

$$\operatorname{Min} \delta = \sqrt{\sum_{i=1}^{n} (S_i - S_{mi})^2}$$

6

Bluetooth Fingerprint similarity

Signals may has a high similarity in certain regions due to the refraction and diffraction of the signal

Brief review

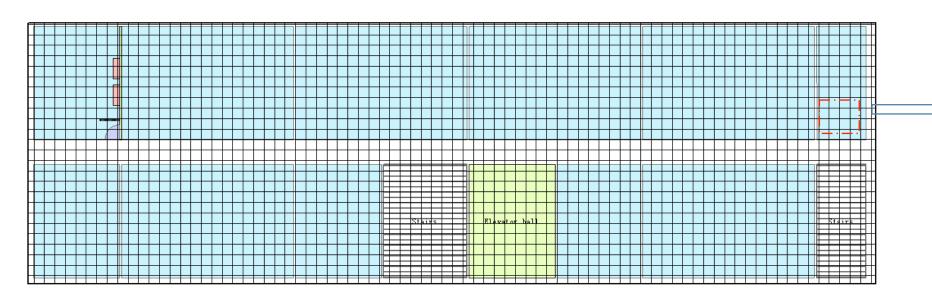

Category	authors	Location Algorithm	Details
MOTION-ASSISTED	A. Rai, K. K. Chintalapudi(2012)	Particle Filter	Simple step detection can be based on peak detection or zero crossing of acceleration readings.
	W. Sun(2014)	Graph-fusion	Simplify the indoor map model ,get high accuracy for narrow corridors.
Temporal patterns	Y. Kim, H. Shin,(2012)	Walking direction	Use the Rssi peak in a temporal sequence get 2M accuracy in corridor.
	H. Wang <i>et al.</i> (2012)	Fingerprint	Through Wifi landmark
Fusion sensors	Z. Yang, X. Feng,(2014)	Kalman filter	some advanced and efficient models between wireless signals and motion to locate the target
Map information	Z. Xiao, H. Wen, A. Markham(2014)	Map Craft	Use the Step counts and heading direction, but rely on large training data
НММ	Jingbin Liu(2014)	Bayesian	Use the HMM and Viterbi to increase the accuracy in cooridors which is about 2M

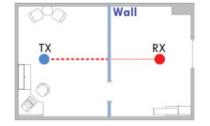
Our Approach for fingerprint

For improving location accuracy and reduce the calculating-time and complexity of fingerprinting

Combine the Bayesian and Nearest Neighbor, Use the map information and grid

filtering , give map constrains and update the HMM model.

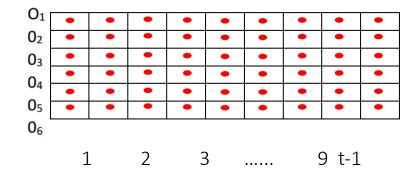



Nanjing Normal University

Principle of the New Algorithm (1)

- grid filitering
- distance
- accessibility
- topology

	A1	A2	A3
\sim	A4	A0	A5
•	A6	A7	A 8


aland allahala haladada

Principle of the New Algorithm (2) 1. Hs M(B) scha, r.acterized 2. $O = \{O_1, O_2, O_3, \dots, O_T\}$ 3. A = $a \downarrow i, j = P/q \downarrow t+1 = S \downarrow j |q \downarrow t = S \downarrow i], 1 \ll i, j \ll N$ 4. $\pi = {\pi_i} \pi_i = P[q_1 = S_i]$. q=15. $V = \{v1, v2, v3, \dots, vM\}$ 6. $B = \{b_i(k) | at t | q_t = S_i\}, 1 \le j \le N, 1 \le k \le M.$

_

[**■**a11&…&a1j@:&…&:@ai

- S is the set of possible state, is the set of possible states, where a state in grid.
- A is the state transition probability distribution between states i and j,
- O is a sequence of observations,
- π is the initial state probability distribution,
- V is the set of possible observation symbols,
- B is the observation symbol probability distribution in state j

Viterbi Algorithm

Viterbi Algorithm determining the most likely path.

1.Initialization

```
\delta \downarrow 1 (i)=\pi \downarrow i b \downarrow j (O \downarrow 1), 1 \ll i \ll N
```

 $\varphi \downarrow 1$ (*i*)=0

2. Recursion

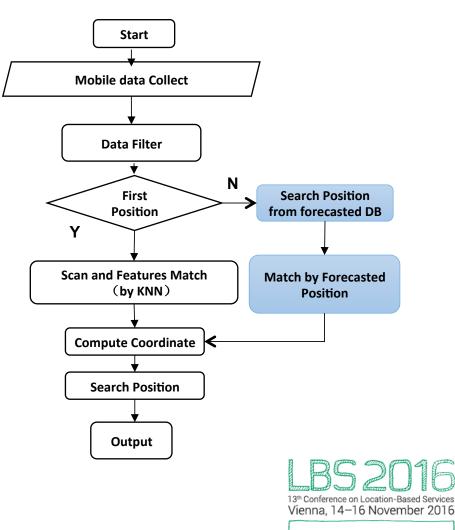
 $\delta \downarrow t(j) = \max - 1 \ll j \ll N \left[\delta \downarrow t(i) a \downarrow i, j \right] b \downarrow j(O \downarrow t)$ $1 \ll t \ll T \ 1 \ll i \ll N$ $\varphi \downarrow t(j) = argmax - 1 \ll j \ll N [\delta \downarrow t - 1(i)a \downarrow i, j]$

 $\delta \downarrow t(j) = \min_{\tau} 1 \ll j \ll N \left[\delta \downarrow t(i) a \downarrow i, j \right] b \downarrow j(O \downarrow t)$ $\varphi \downarrow t(j) = argmin - 1 \ll j \ll N [\delta \downarrow t - 1(i)a \downarrow i, j]$

 $1 \ll t \ll T \ 1 \ll i \ll N$ $2 \ll t \ll T \ 1 \ll i \ll N$

 $2 \ll t \ll T \ 1 \ll i \ll N$

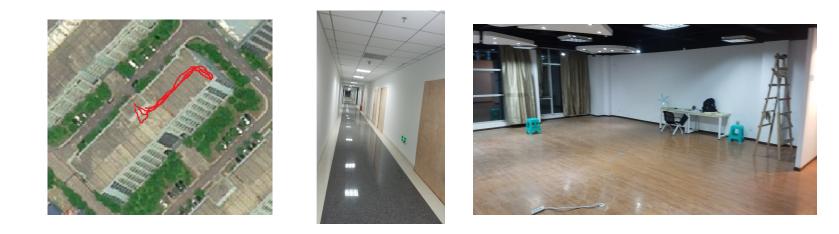
Principle of the New Algorithm (3)

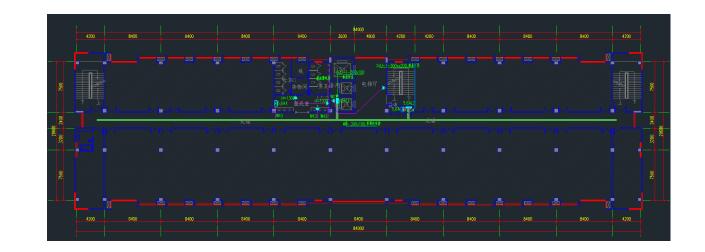

1.According to the last point, query prediction point knowledge base,

2. Matching fingerprint database, get the positioning results.

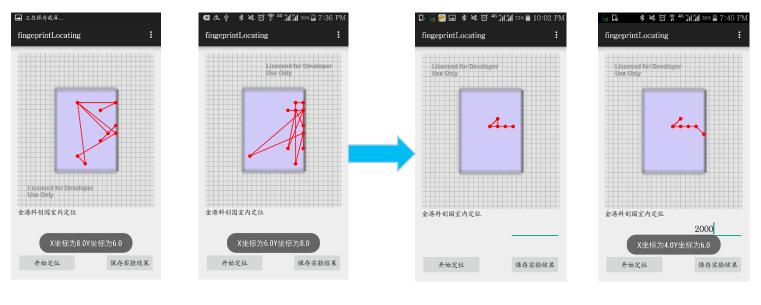
N=Estimate.length,usually below 9.

3.With the updata the position data, the HMM model would change


 $\operatorname{argmin}_{\tau \gamma \in \Omega} (l = 1/n \sqrt{\sum i} = l \uparrow n \quad \text{with} \quad (s \downarrow 0 \uparrow -i - s \downarrow r \uparrow i) \uparrow 2)$

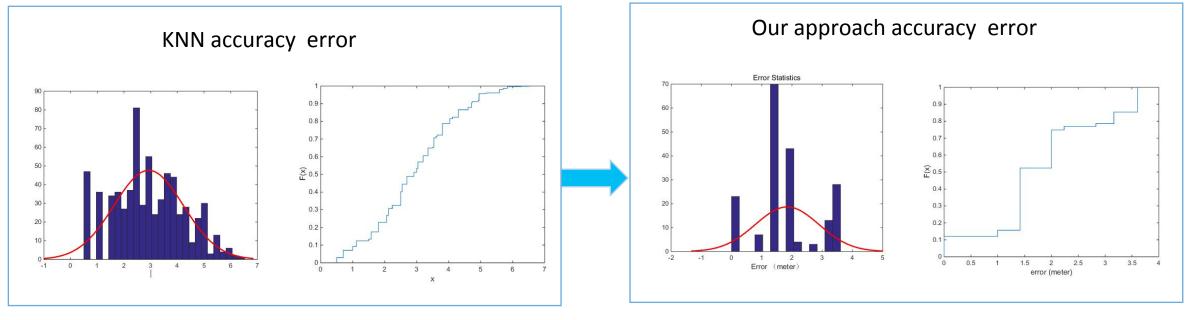


alated allated a later that


Experiment


On 6 floor, at JinGang Science Park No.4 Using mobile phone S5 and ibeacons equipment. Plan one: using KNN algorithm for open areas Plan two: Using HMM+Grid+KNN algorithm for rooms

Analysis of results



• KNN method

Our method

Analysis of results

Positioning Method	Accuracy/m	Time/s
KNN	2.95	3.1
HMM-grid-knn	2.15	1.1

Conclusions

- This paper proposes a Hidden Markov Model for indoor position with grid filitering that can use in the open area. The experiment proved the improvement of accuracy and stability on indoor location.
- The first point go wrong would not affect seriously. It would move toward the right direction.

Future work

- Need more tracks and big data to train the HMM.
- Use the combination of ibeacon and pdr algorithm.

Thank you! Welcome question!

Nanjing Normal University zhengxy91@Hotmail.com

My paper is supported by the National Science Foundation of China(General Program).Grant No.41571382

