

- An Eye Tracking Study -

Conrad Franke Jürgen Schweikart

Beuth University of Applied Sciences Berlin

Navigation in an unfamiliar environment is a challenging mental process

- Navigation in an unfamiliar environment is a challenging mental process
- Landmarks are intuitively perceived and used for navigation

- Maps are used for navigation purposes
- Investigate cognitive effect of map content, in particular landmarks

User perspective in a real environment

User perspective: mobile eye tracking technology

- User perspective: mobile eye tracking technology
- Eye-Mind-Assumption: longer fixation = intensive mental processing

Objective

Investigation of local landmarks from a **viewer perspective**, to identify map content which stimulates the landmark knowledge and **spatial thinking**.

Research questions

- 1) Are objects **fixated longer** and more **frequently** when there is a change in direction and are they transferred to the **landmark knowledge**?
- 2) How often is the map used as a **navigational aid** when finding the way?

3) Is the **sustainability of landmark knowledge** improved by visualizing landmarks on maps?

Study design

20 participants in an unknown environment: Berlin Spandau old town

Study design

- 20 participants in an unknown environment: Berlin Spandau old town
- Two groups (landmark group 3 women; control group 5 women)

Study design

- 20 participants in an unknown environment: Berlin Spandau old town
- Two groups (landmark group 3 women; control group 5 women)
- 1. Part:
 - Task: Navigation + Eye tracking (Fixations)
 - Interviews (with a featureless map) WITHOUT using street names
- 2. Part:
 - Memory test two weeks after the out door navigation task

Results 1: Interview

37 different landmark objects were named 153 times

Results 1: Interview

37 different landmark objects were named 153 times

	Landmark group	Control group
Number of different landmarks	27	24
Ø Landmark recalls per interview	8.3	7.0

Results 1: Interview

Landmarks recalls along the route

Fixation duration on landmark objects

Average fixation duration per participant	Landmark group	Control group
On a landmark*	409 ms	599 ms
On other objects with at least one fixation	236 ms	209 ms

^{*} Objects named in the interview

Fixation counts on landmark objects

Average fixation counts per participant	Landmark group	Control group
On a landmark*	2.45	3.89
On other objects with at least one fixation	1.66	1.29

^{*} Objects named in the interview

Navigation performance: Fixation duration on map (Landmark group)

Map usage	Ø Fixation duration per participant
Landmark group	16.8 sec.

Navigation performance: Fixation duration on map (Control group)

Map usage	Ø Fixation duration	
	per participant	
Landmark group	16.8 sec.	
Control group	29.5 sec.	

almost twice as much

Results 3: Memory test

	Located correct	Located wrong	Memory without location	No memory
	COTTOOL	wrong	location	Incinory
Landmark group	6.2	1.4	4.8	10.8
Control group	3.3	4.7	5.3	10.4

 Correct located objects: Difference between groups is significant (Kruskal-Wallis test: p=0.05)

Results 4: Eye-Mind-Assumption

 Spearman's rank correlation analysis between landmark recalls and eye movements (Eye-Mind-Assumption confirmed)

	Landmark-recall/Fixation- duration (ms)	Landmark-recall/ Fixation- count
Landmark group	0.670**	0.674**
Control group	0.584**	0.601**

(**p < 0.01)

Eye-Mind-Assumption was confirmed in a real world environment ...

... **because**: Objects, that are focused longer are more probably mentally processed

Visualization of landmark icons on maps...

... creates a more detailed **mental image** of the environment **because**: more landmarks are recalled during the interview

Landmark icons on maps ...

... improve the navigation performance,

because: the map is used less often as an navigational aid

Landmark icons on maps ...

... improve the sustainability of information in a mental map, **because**: significantly more landmarks are recalled and located correctly

Summary

The results show that landmarks on maps ...

- ✓ ... improve navigation processes
- ... improve both short-term and long-term the landmark knowledge and the mental storage of spatial information.

Thank you for your attention

