

Comparison of Different Vector Distance Measure Calculation Variants for Indoor Location Fingerprinting

Guenther Retscher and Julian Joksch

Department of Geodesy and Geoinformation Reserach Group Engineering Geodesy TU Wien

Wi-Fi Positioning

- Signal-of-Opportunity
- Use of already available infrastructure
- IEEE-802.11 standard in 2,4 GHz band
- Compatible devices
- Received Signal Strength RSS
- Location fingerprinting

Fingerprinting Matching Approaches

Allocation of RSS scans in the positioning phase to the training fingerprinting database DB

Universial Minkowski Vector Distance VD

$$L\downarrow q = \sqrt{q} \& \sum p = 1 \uparrow P @|s \downarrow t, p - s \downarrow r, p |\uparrow q$$

where

 $s \downarrow t, p$ is the *RSS* $\downarrow p$ of the fingerprint *TP* $\downarrow t$ measured in the positioning phase on the test point to be positioned, $s \downarrow r, p$ the *RSS* $\downarrow p$ of the fingerprint *RP* $\downarrow r$ measured in the training phase on the reference point, *q* the norm parameter and $L \downarrow q$ is the norm *q* between two points

Manhattan and Euclidean VD

$$y = 1: \qquad L \downarrow 1 = \sum p = 17P ||s \downarrow t, p - s \downarrow r, p|$$

$$L \downarrow 2 = \sqrt{\sum p = 17P} |s \downarrow t, p - s \downarrow r, p| 12$$

$$y = 2:$$

$$q = \infty$$

$$L \downarrow \infty = \max - p | s \downarrow t, p - s \downarrow r, p |$$

Canberra VD Cosine VD

 $\frac{d\downarrow Can_{f} \sum p = 1}{p} \frac{2p}{s} \frac{s}{t} p = s \downarrow t, p \cdot s \downarrow r, p / \sqrt{\sum p} = 1 \uparrow P = s \downarrow t, p \uparrow 2 - s \downarrow r, p |/|s \downarrow t, p |+|s \downarrow r, p |$

Sorensen VD Hellinger VD

=1*îP\$\$|s\t,p-s\r,p|/\Sp*=1*îP\$\$|ffelt=s\r/p/2 \||\s\t -\s\r ||\z*

Chi-square VD Jeffrey VD

 $\begin{aligned} hi = \sum p = 1 \, \widehat{P} \otimes (s \downarrow t, p - dp \not p) \widehat{f} &= \sum p + 1 \, \widehat{P} \otimes (s \downarrow t, p \cdot \log \downarrow 10 \ (s \downarrow t, p - dp \not p) \\ s \downarrow r, p \cdot \log \downarrow 10 \ (s \downarrow r, p / \rho \downarrow p \) \end{aligned}$

Experiments

- 93 grid reference points
- 6 Access points
- 4 orientations

Indoor Test Site

Distribution of reference points RPs (black dots), test points TPs (blue dots) and Access Points APs (red triangles)

4 Multiple-SSID Networks

SSID	Characteristics
eduroam	Network for students, staff and participants of this international network
tunet	Network for students and staff as well as visiting scholars and conference participants. The network is encrypted.
tunetguest	Alternative for network tunet, not encrypted.
wlanipsec	Network only for staff of TU Wien while using a VPN (Virtual Private Net- work) connection.

Long-time RSS Observations

DFs			eduroam		tunet		tunetguest		wlanipsec		total	
			min	max	min	max	min	max	min	max	min	max
in [m] in	dan- attan	NN	1.27	5.38	1.27	5.38	1.27	5.38	1.27	6.83	1.27	5.38
the four		KNN	0.60	2.99	0.95	4.67	0.60	7.20	0.60	4.67	0.60	4.67
	r q	KWNN	0.55	3.01	1.16	4.87	0.71	7.83	0.63	4.79	0.66	4.72
different	Buch- dean	NN	1.27	5.38	1.27	5.38	1.27	5.38	1.79	6.46	1.27	4.57
		KNN	0.42	2.46	0.42	3.90	1.74	7.20	0.42	5.49	0.42	5.49
22ID	_	KWNN	0.35	2.57	0.32	3.49	1.59	7.73	0.33	5.40	0.31	5.10
natworks	ev p	NN	0.60	0.40	0.42	4.57	1.27	0.90	1.79	0.40	1./9	0.34
networks	Can- Chel berra she	KNN	0.72	4.60	0.24	3.90	1.34	4.33	2.13	7.654	0.25	5.57
and in		NN	1.27	5.38	1.27	5.38	1.27	5.38	1.27	6.83	1.27	5.38
		KNN	0.95	2.99	0.95	4.67	0.60	7.20	0.60	4.67	0.60	4.67
τοται		KWNN	0.54	3.03	1.11	4.921	0.72	7.76	0.62	4.82	0.68	4.70
for the	Cosine	NN	1.27	5.38	1.27	5.38	1.27	5.38	1.79	6.46	1.79	4.57
		KNN	0.42	2.46	0.42	3.90	1.74	5.49	0.42	5.49	0.60	5.87
different		KWNN	0.43	2.68	0.59	3.02	1.30	4.01	0.29	5.48	0.82	5.62
	÷ _	NN	1.27	5.38	1.27	5.38	1.27	5.38	1.27	6.83	1.27	5.38
VDS	ore	KNN	0.60	2.99	0.95	4.67	0.60	7.20	0.60	4.67	0.60	4.67
	s	KWNN	0.55	3.01	1.16	4.87	0.71	7.83	0.63	4.80	0.67	4.72
	Chi- Hell- square inger	NN	1.27	5.38	1.27	5.38	1.27	5.38	1.79	6.46	1.27	4.57
$DE(TP\downarrow t) =$		KNN	0.42	2.40	0.42	3.90	1.74	7.20	0.42	7.20	0.42	2.99
		KWNN	1.97	2.09 5.28	1.97	3-33 5-28	1.01	5.28	1.70	6.46	1.97	3.00
$V(X \downarrow t -$		ININ	0.42	2.46	0.42	3.90	1.74	7.20	0.42	7.20	0.42	2.99
$r(t) 17 \pm (1)$		KWNN	0.43	2.72	0.53	3.21	1.43	8.16	0.27	8.33	0.42	3.17
		NN	1.27	5.38	1.27	5.38	1.27	5.38	1.79	6.46	1.27	4.57
$\int t - v \int t$) 12	ffre	KNN	0.42	2.46	0.42	3.90	1.74	7.20	0.42	7.20	0.42	2.99
	Jei	KWNN	0.43	2.72	0.53	3.21	1.43	8.16	0.27	8.33	0.42	3.17

MDEs in [m] in the SSID network eduroam of all six TPs for the different VDs

MDE(l)=1/T $\cdot \sum t = 1 \uparrow T = DE($ $TP\downarrow t$)

-		TP 1	TP 2	TP 3	TP 4	TP 5	TP 6
Man- hattan	NN	5.38	1.79	4.01	1.79	4.60	1.27
	KNN	2.99	2.15	2.46	0.60	1.52	0.95
	KWNN	3.01	2.21	2.56	0.61	1.07	0.55
ucli- lean	NN	5.40	1.79	4.01	1.79	4.57	1.27
	KNN	2.15	2.15	2.46	0.60	0.42	0.95
- H	KWNN	2.21	2.19	2.57	0.63	0.35	0.58
* *	NN	1.79	4.01	6.46	1.79	4.57	1.27
heb	KNN	3.64	2.15	4.67	0.60	2.83	0.95
0	KWNN	3-55	2.22	4.69	0.76	2.58	0.73
, ឆ្	NN	5.38	4.01	4.01	1.79	4.57	1.27
Can	KNN	2.99	2.15	2.46	1.79	1.52	0.95
~ f	KWNN	3.03	2.22	2.62	1.76	1.11	0.55
е	NN	5.38	4.01	4.01	1.79	4.57	1.27
osiı	KNN	1.79	2.15	2.46	0.60	0.42	0.95
õ	KWNN	1.91	2.25	2.68	0.65	0.48	0.43
÷	NN	5.40	1.79	4.01	1.79	4.57	1.27
ore	KNN	2.99	2.15	2.46	0.60	1.52	0.95
s	KWNN	3.01	2.21	2.56	0.61	1.07	0.55
	NN	5.38	4.01	4.01	1.79	4.57	1.27
Hell	KNN	2.15	2.15	2.46	0.60	0.42	0.95
	KWNN	2.22	2.22	2.59	0.64	0.35	0.57
. 2	NN	5.38	4.01	4.01	1.79	4.57	1.27
Chi	KNN	2.15	2.15	2.46	0.60	0.42	0.95
S.	KWNN	2.30	2.30	2.72	o.68	0.44	0.43
ey	NN	5.38	4.01	4.01	1.79	4.57	1.27
effr	KNN	2.15	2.15	2.46	0.60	0.42	0.95
ſ	KWNN	2.30	2.30	2.72	o.68	0.44	0.43

Comparison of resulting positions with the NN, KNN and KWNN matching approach on test point TP 5

Comparison of resulting positions with the NN, KNN and KWNN matching approach on test point TP 1

Discussion

- Results of 9 VDs do not show significant differences
- Selection depends on the surrounding environment and the present interference conditions
- The use of the most commonly employed Euclidean VD is suitable
- Only one network of multiple-SSIDs should be selected
- Averaging over all networks is not recommended
- KNN and KWNN have better performance than the NN matching approach

Conclusions and Future Work

- Current investigations are focused on the additional integration of continuous long-time measurements to consider temporal and spatial RSS signal variations
- A performance increase is the additional use of the compass data from the smartphone sensors and an orientation dependent fingerprinting DB
- Investigation of probabilistic approaches such as the Mahalanobis VD
- Combination of Wi-Fi positioning with fingerprinting using present ambient geomagnetic fields yields to positioning accuracies of around 0.5 m
- Integration with the inertial sensors embedded in the smartphone for dead reckoning
- 3D environments with barometric pressure sensor augmentation

17/20

18/20

19/20

Mean lateral deviation	Fingerprinting method				
	Wi-Fi	Mag + Wi-Fi			
Trajectory 1	0.72m	0.47m			
Trajectory 2	1.34m	0.47m			
Trajectory 3	2.00m	0.98m			