UNIVERSITY OF TWENTE.

COMBINING VGI WITH VIEWSHEDS FOR PHOTO TAG SUGGESTION

LBS Conference – Vienna – 23 nov 2011

BAREND KÖBBEN, OTTO HUISMAN, HSIANGHSU LIN <kobben@itc.nl>

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

OVERVIEW

COMBINING VGI WITH VIEWSHEDS FOR PHOTO TAG SUGGESTION

- Introduction
- Methodology:
 - determine theoretical field of view
 - use DSM to calculate realistic field of view
 - determine objects visible in the view
 - clustering VGI data and ranking
 - Experiment:
 - Implementation in ArcGIS
 - Implementation as a webservice
- Conclusion

INTRODUCTION

an improved method for tagging of digital photos

- making tagging process simpler and more accurate for users
- increasing the quality of the tag data as a whole

Scenario:

- you have taken a digital photo, and want to tag it
- system takes into account
 - objects that are in the photo's field of view
 - existing tags for those objects (ranked)
- to suggest suitable tags for you photo

main problem: how to identify objects that might be visible in a given spatially referenced photograph ?

- use EXIF data to calculate theoretical field of view FOVt
- use DSM and visibility analysis to calculate realistic field of view FOVr
- use object footprints to determine objects visible in the view OIV
- clustering of VGI data within OIV to rank objects

- use EXIF data to calculate theoretical field of view FOVt
 - calculate the view angle:

$$\theta = 2 \arctan\left(\frac{l_d}{2 \ l_f}\right)$$

 θ = view angle I_d is CCD size (image dimension) I_f is the focal length

 combine with camera position (GPS) and direction (compass)

- use DSM and visibility analysis to calculate realistic field of view:
 - FOVt + DSM + observer height used in viewshed analysis
 - ► FOVr is subset of FOVt

UNIVERSITY OF TWENTE

EXIF data

- use EXIF data to calculate theoretical field of view FOVt
- use DSM and visibility analysis to calculate realistic field of view FOVr
 - use object footprints to determine objects visible in the view OIV:
 - add objects that intersect or touch FOVr
 - ► OIV is more than FOVr

UNIVERSITY OF TWENTE

- use EXIF data to calculate theoretical field of view FOVt
- use DSM and visibility analysis to calculate realistic field of view FOVr
- use object footprints to determine objects visible in the view OIV
- clustering of VGI data within OIV to rank objects:
 - experimented with several algorithms
 - finally simple frequency: count of occurrences of VGI points within OIV
 - ► absolute frequencies to relative: for each object percentage p: $p = \frac{n}{N}100$

n = number of tags within object N = total number of tags within OIV

EXPERIMENT: Implementation in desktop GIS

"proof-of-concept": pragmatic and practical

- Apple iPhone4 and Fujifilm F200 EXR + eTrex GPS/compass
- available data (Enschede city centre):
 - DSM: airborne laser altimetry (20 points/m²)
 - building footprints: Top I ONL topographic data of Kadaster NL
 - geo-tagged photos:
 Flickr + Panoramio
- Commercial Off-The-Shelf Software (ESRI ArcGIS 10):
 - various toolboxes

EXPERIMENT: Implementation as a webservice

ArcGIS no good for intended users \rightarrow implemented as webservice:

- server—side Python using ESRIs arcpy to run the ArcGIS models
- output to KML format

CONCLUSION

Method works well and seems to offer effective way to make tagging both easier and more accurate, ultimately increasing the quality of the VGI data as a whole.

- implementation problems:
 - Imited accuracy of iPhone GPS and eTrek compass
 - building layer:
 - relatively dated: not always matched DSM and actual situation
 - building block outlines only, no individual shops / houses
 - no other environmental objects (statues, street objects)
 - dependency on building and DSM data:
 - system as it now stands not suitable for real—world use, mainly because of very limited spatial extent
 - availability is fast changing (OpenStreetMap / GlobalOrtho)
- future work:
 - better tag suggestion system (using text mining and semantics)

THANK YOU FOR YOUR ATTENTION ! (more details in paper in Springer book)

QUESTIONS....?

kobben@itc.nl

© B. Köbben, O. Huisman, H. Lin – LBS conference – Vienna – 23 nov 2011