

Institute of Cartography and Geoinformatics | Leibniz Universität Hannover

Finding interesting places and characteristic patterns in spatiotemporal trajectories

M.Sc. Udo Feuerhake udo.feuerhake@ikg.uni-hannover.de

Outline

- Problem definition
- A Three-Step-Approach
- Examples for results
- Summary and outlook

Problem definition

Problem context: Project `qTrajectories'

`Observation of human beings or animals in complex areas using limited resources (cameras)'

- Interpretation und classification of trajectory data
 - Recognition of movement patterns
 - Prediction of movement
 - Identification of critical behavior
- Use of decentralized algorithms (more than one camera)

Problem:

Critical behavior is not defined a priori

Problem definition – Example dataset

One trajectory dataset of animals

Problem definition – Critical/unusual behavior

Evaluation is based on movement/trajectory data

- Behavior derives from movements
 - Critical movement patterns correspond to critical behavior

Critical behavior

Critical movement

Assumption: In general, individuals do not behave critically

Critical movements correspond to unusual movements

Search for unusual movements (later: further classification in critical or not critical)

Critical movement

Unusual movement

Criteria for unusual movements depend on spatio-temporal context

A Three-Step-Approach

Unusualness depends on spatio-temporal context

Spatio-temporal structuring of data

Step 1: Extraction of interesting places

Creation of comparability

Detection of comparable trajectories / trajectory segments

Step 2: Segmentation of trajectories based on places

Critical behavior corresponds to unusual movements

 \rightarrow Identification of unusual movements

Step 3: Evaluation of comparable segments

Requirements, assumptions and definitions

Requirements

- Large amount of data with a high density and sampling rate
- Definitions
 - Attractive place counts at least N visits
 - Place has certain geometry and expansion

Assumptions

- Individuals get slower at attractive places
- Stays can be identified by low velocity (threshold)

Approach – Step 1 – Extraction

Test of `stay criteria' on every movement

Creation of candidate places

Condition: first visit

Upgrade to attractive places

Condition: N visits of candidate

While visiting:

- Counts of entries and exits of each individual
- Total visit count
- Correction of place's center coordinates

Approach – Step 3 – Evaluation

- Evaluation of segments within clusters
- One possibility: Another clustering based on spatiotemporal attributes
 - For example: Clustering based on Hausdorff distances between trajectories
- Attributes depend on the observed domain

Results of Step 1 – Examples

Birds (GPS)

One team during handball match (video)

Results of Step 1 – Influence of parameters

Results of Step 2 – Segmentation

Results of Step 3 – Evaluation

Evaluation example for one segment cluster

ka

Summary

A three step approach to detect unusual behavior

- Extraction of attractive places
- Segmentation of trajectories
- Evaluation of segments within each segment cluster

Applicable for trajectory data of

- different sources (human beings, animals,...)
- different tracking devices (GPS, video,...)

Algorithm is suitable for real-time applications

Outlook

► Use of graph structure (nodes → places, edges → segment) clusters for movement prediction

Decentralized version of algorithm

Learning or automatic adjustment of required parameters

Using more temporal components (e.g. typical times of day)

Thank you for your attention! Are there any questions?