Locally optimal dissimilar paths in road networks

Stéphanie Vanhove Veerle Fack

Combinatorial Algorithms and Algorithmic Graph Theory Department of Applied Mathematics and Computer Science Ghent University

Locally optimal dissimilar paths in road networks

Work in progress

Stéphanie Vanhove, Veerle Fack Locally optimal dissimilar paths in road networks

Dissimilar paths

Our method Preliminary results Conclusion Why dissimilar paths? What to avoid

Outline

Dissimilar paths

Why dissimilar paths? What to avoid

Dissimilar paths

(日)

э

Why dissimilar paths? What to avoid

Why dissimilar paths?

- Alternative routes
- Spreading transportation of hazardous materials

Stéphanie Vanhove, Veerle Fack

Locally optimal dissimilar paths in road networks

Why dissimilar paths? What to avoid

What to avoid

We may get:

We want:

Paths should have acceptable weights.

Locally optimal dissimilar paths in road networks

Why dissimilar paths? What to avoid

What to avoid

We may get:

We want:

Paths should be dissimilar.

Why dissimilar paths? What to avoid

What to avoid

We may get:

We want:

Paths should be locally optimal.

Why dissimilar paths? What to avoid

Our goal

Our goal: develop an algorithm which finds a set of paths such that

- the paths are dissimilar
- the paths are locally optimal
- the paths have acceptable weights
- the calculation can be performed fast

- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

Outline

Our method

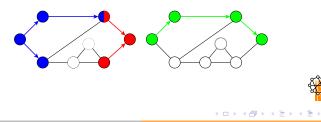
- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

Our method

- Generate many paths (e.g. 1000)

 with a certain maximum path weight

 Select a dissimilar subset (e.g. 3 paths)
- Make the chosen paths locally optimal



Generate many paths
 Select dissimilar paths
 Make them locally optimal

1. Generate many paths

Grow a *forward search tree* from start node and a *backward search tree* from target node.

- Add a new path whenever both searches meet (if not too long)
- Continue until enough paths found or no more paths can be found

Stéphanie Vanhove, Veerle Fack Locally optimal dissimilar paths in road networks

- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

2. Select dissimilar paths

Definition of dissimilarity D between 2 paths P_i and P_j :

Definition

 $D(P_i,P_j) = 1 - [L(P_i \cap P_j)/L(P_i) + L(P_i \cap P_j)/L(P_j)]/2$

- Assigns a value between 0 and 1
- $0 \rightarrow$ the paths coincide completely
- 1 \rightarrow the paths have no arcs in common

< ロ > < 同 > < 回 > < 回 >

- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

Select dissimilar paths: heuristic

- Select the shortest path.
- Out of all remaining paths: select path most dissimilar to shortest path.
- Out of all remaining paths: select path most dissimilar to both paths already chosen.

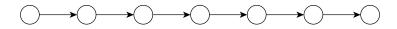
< □ > < 同 > < 回 > < □ > <

- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

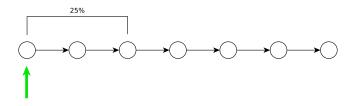
3. Make them locally optimal

Definition


A path is locally optimal if every "short" subpath is a shortest path.

"short" = less than e.g. 25% of the shortest path weight

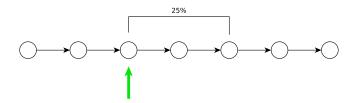
Method: whenever a "short" subpath is *not* a shortest path, replace it by the shortest path. Repeat until locally optimal.



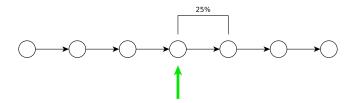
- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

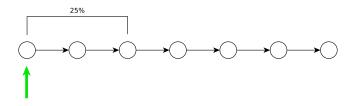


- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

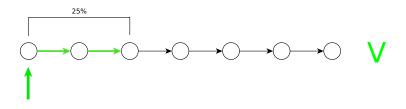


- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



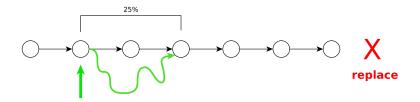
- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



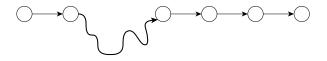
- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



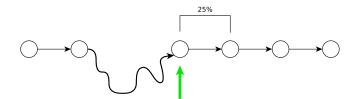
- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



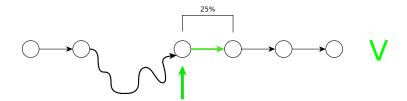
- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



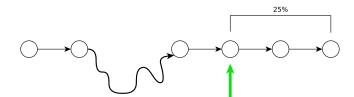
- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



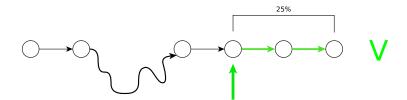
- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

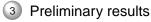


- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal



- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal

- 1. Generate many paths
- 2. Select dissimilar paths
- 3. Make them locally optimal


Outline

Results

- Alternatives 4%, 9%, 15%, 27% longer than shortest path
- All paths are locally optimal for $\alpha = 25\%$
- Calculation time: between a few seconds and a few minutes

Outline

Dissimilar paths

Preliminary results

Conclusion

- Quality of the results is satisfying.
- Algorithm could be faster.
- Future work:
 - Speed up the algorithm.
 - Generate paths which are locally optimal immediately.
 - Perform detailed experiments.

Thank you for your attention!

Questions?

Stéphanie Vanhove, Veerle Fack Locally optimal dissimilar paths in road networks