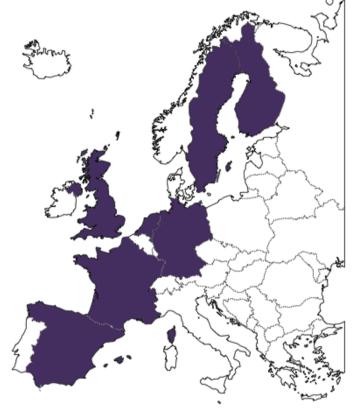
Spatial Data Computations in a Toolkit to Improve Accessibility for Mobile Applications

Janne Kovanen*, Paul Kelly**, Stuart Ferguson**, L. Tiina Sarjakoski* and Tapani Sarjakoski*

> * Finnish Geodetic Institute Department of Geoinformatics and Cartography

** Queen's University Belfast School of Electronics, Electrical Engineering and Computer Science

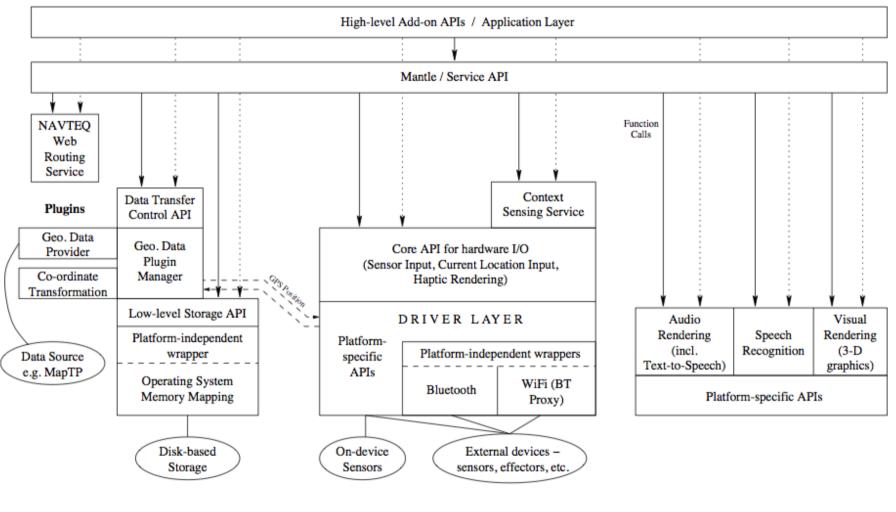

LBS 2011, Vienna, 21–23 November 2011

HaptiMap

- "Haptic, Audio and Visual Interfaces for Maps and Location Based Services"
- HaptiMap aims at making mobile maps and location based services more accessible by using several senses like touch, hearing and vision

Receives financial support from the EC in the 7th Framework Programme

The HaptiMap toolkit


- The toolkit provides "tools" for mobile map application developers to enhance the accessibility of their applications
- Tools support several interaction modalities
- Open-source
 - Licensed under an umbrella of OS licenses
 - Subversioning, wiki, mailing list etc. are available
- Cross-platform
 - Android, iPhone (iPad), Windows Mobile, Meego, Symbian, ...

... The HaptiMap toolkit

- Made "simple" for the end users, such as
 - Human-Computer Interaction developers
 - Developers building on top of existing platforms and having a moderate knowledge of the spatial domain
- Simplicity is a compromise
- Is composed of three principal layers
 - Core, Mantle and Crust
- Plug-ins are a logically separate components
- Is a set of Application Programming Interfaces

The architecture

LBS 2011

Finnish Geodetic Institute 5 janne.kovanen@fgi.fi

LBS 2011

The architecture

CRUST Platform Specific HCI modules Examples of Toolkit use Virtual Observer Tactile Compass MANTLE Magnetic Compass **Specil Purpose Functions** Bearing Module CORE Spatial Geometry Geographic Information Haptic Guiide Hardware Interfaces WKT My Location Map Data Functions Activity Recognition Platform Independent HCI modules e.g. HM_MapView Examples for use on: Desktop Windows/OSX/Linux Android iPhone Symbian

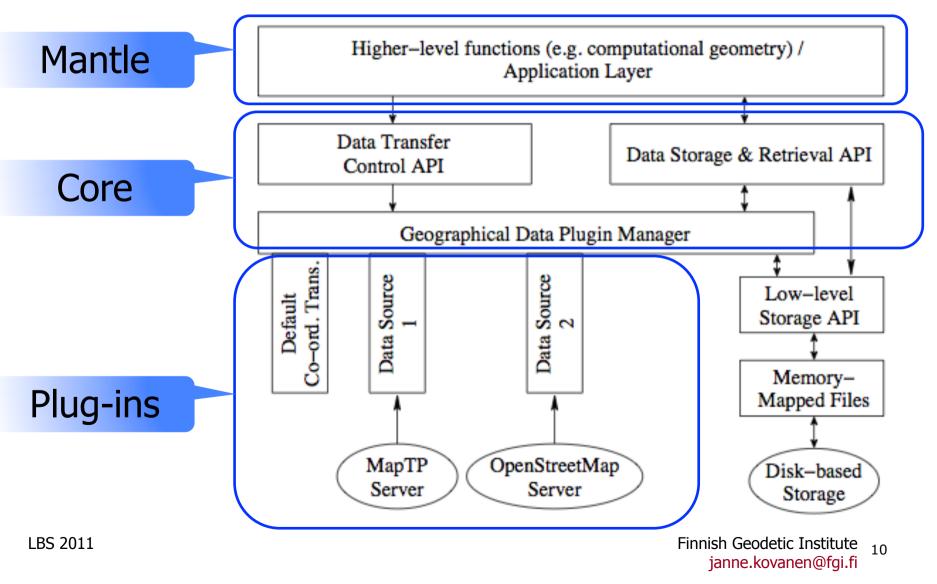
Maemo

Finnish Geodetic Institute ₆ janne.kovanen@fgi.fi

The architecture – Core

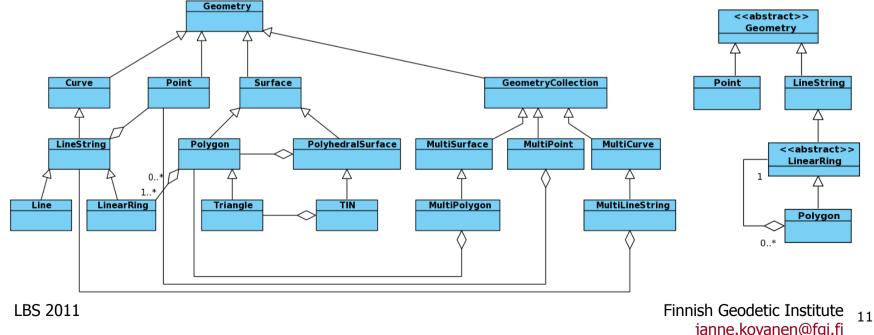
- The core contains functions to access both in-built and external sensors
 - Accelerometers, tactile vibrators, speech engines, positioning, digital compass, ...
 - Parts of the core are platform-specific!
- The second task is handling and caching of geographic vector data
 - The data is stored in memory-mapped disk files
- Public interfaces for upper layers
- Currently licensed under LGPL

The architecture – Mantle


- Consists of platform-independent humancomputer interaction modules
 - Act as building blocks
 - Contain analysis and processing support
- Includes computational geometry functions
 - Supports the HCI modules
 - Data is always read from the internal data storage
- Written in ANSI-C
- Currently licensed under LGPL

The architecture – Crust & Plug-ins

- Crust contains platform-specific components
 - Human-Computer Interaction modules
 - Views, view controllers, view activities, fragments, …
 - Examples
- Plug-ins are used for
 - Reading data from external data sources
 - Perform model transformation to the internal model
 - Co-ordinate reference system support
 - The leading plug-in defines the reference system
 - Any suitable license may be used



Geographical data loading

The geometry model & data types

- Geometries are 2D (+1D) points and linestrings
- Polygons are defined by the internal data storage
- Co-ordinates are stored as 32-bit integers
- The internal Unit of Measure is centimeters

Computational geometry functions

/* Metric methods */

```
HM_RESULT hm_geom_area(hm_t *hm, int lid, double *area);
HM RESULT hm geom bearing(hm_t *hm, int pid1, int pid2, double *angle);
HM_RESULT hm_geom_distance(hm_t *hm, enum HM_GEOMETRY_TYPE gtype1, int fid1,
          enum HM_GEOMETRY_TYPE gtype2, int fid2,double *dist);
HM RESULT hm geom distance hausdorff(hm t *hm,enum HM GEOMETRY TYPE gtype1,
          int fid1,enum HM_GEOMETRY_TYPE gtype2, int fid2,double *dist);
HM RESULT hm geom length(hm t *hm, int lid, double *length);
/* Spatial predicates */
HM_RESULT hm_geom_contains(hm_t *hm, int polyfid,
          enum HM GEOMETRY TYPE gtype, int fid, int *r);
HM_RESULT hm_geom_within(hm_t *hm, int fid, int polyfid,
          enum HM_GEOMETRY_TYPE gtype, int *r);
HM RESULT hm geom intersects(hm t *hm,enum HM GEOMETRY TYPE gtype1,
          int fid1, enum HM_GEOMETRY_TYPE gtype2, int fid2, int *r);
/* Overlay methods */
HM RESULT hm geom intersection(hm t *hm,
          enum HM_GEOMETRY_TYPE gtype1, int fid1,
          enum HM_GEOMETRY_TYPE gtype2, int fid2,
          enum HM GEOMETRY TYPE *r type, int *r);
/* Buffering */
HM RESULT hm geom buffer(hm t *hm, int fid, enum HM GEOMETRY TYPE gtype,
          double buffer_width, int *r);
/* Generalisation etc */
HM RESULT hm geom simplify(hm t *hm, int lid,double tolerance, int *r);
HM_RESULT hm_geom_centroid(hm_t *hm, int lid, int *r);
HM RESULT hm geom interior point(hm t *hm, int lid, int *r);
HM_RESULT hm_geom_convex_hull(hm_t *hm, int lid, int *r);
HM_RESULT hm_geom_mbr(hm_t *hm, int lid, int *mbr_id);
HM RESULT hm geom ray intersection(hm t *hm, int lid, int pid,
          double angle, double *distance);
```


Performance comparison

- To validate our approach we performed a performance comparison between solutions
- We applied both unit testing and benchmarks
- The benchmarks were run on the iPhone & iPad
- Three different cases were benchmarked
 - Toolkit Data already stored in the internal storage
 - GEOS geometry engine (v. 3.2.2) Data conversion was performed before running the benchmarking
 - Wrapping GEOS Data in the internal storage was converted during benchmarking from the internal data model to data model of GEOS

Performance comparison results

Carrier 중 Benchmark	5:09 cat Bas HaptiMap toolkit	PM sic benc geometry	toolkit +	Results of the first trial versus final (stdev in brackets)	Carrier 🗢 Benchmark	12:37 cat Bas HaptiMap toolkit), chmarks HaptiMap toolkit +
Length Centroid (of polygon)	stdev 0.0093 mean 0.0589	mean 0.0226 stdev 0.0025	stdev 0.0091 mean 0.0206	0,058 vs. 0,004	Length Centroid (of	stdev 0.0252 mean 0.0044	stdev 0.0044 mean 0.0074	mean 0.0192
Area	mean 0.0033	mean 0.0027 stdev 0.0009	mean 0.0133	(0,520 vs. 0,008)	Area	mean 0.0033	mean 0.0028	stdev 0.0006 mean 0.0137 stdev 0.0026
Distance (point - point) Distance (point-linestri	stdev 0.0008 mean 0.0025	mean 0.0038 stdev 0.0018 mean 0.0118 stdev 0.0014	stdev 0.0015 mean 0.0154		Distance (point - point)	stdev 0.0012 mean 0.0024	stdev 0.0010 mean 0.0115	mean 0.0055 stdev 0.0005 mean 0.0164
Convex hull (of a linestring)		stdev 0.0078	stdev 2.1705	0,522 vs. 0,041 (1,268 vs. 0,006)	(point-linestri Convex hull (o	mean 0.0414	mean 0.0938	stdev 0.0040 mean 0.1035 stdev 0.0069

LBS 2011

> Finnish Geodetic Institute 14 janne.kovanen@fgi.fi

.. Performance comparison results

- The internal data storage size increment should be modifiable
- The benchmarking proved the module to be in general faster compared to GEOS
- The solution was tested to be 2-20 times faster than wrapping GEOS functions!

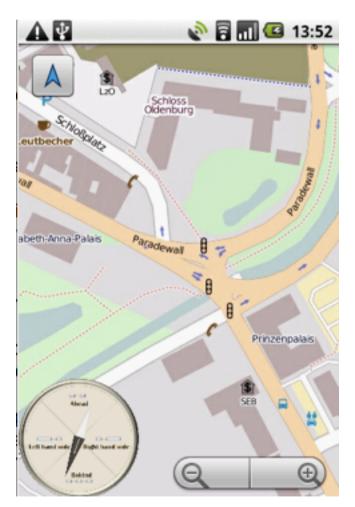

	HaptiMap toolkit	GEOS geometry	HaptiMap toolkit +
Length		mean 0.1156 stdev 0.0075	
Centroid (of polygon)		mean 0.0600 stdev 0.0175	
Area		mean 0.0178 stdev 0.0052	
Distance (point - point)		mean 0.0315 stdev 0.0026	
Distance (point-linestri		mean 0.0954 stdev 0.0069	
Convex hull (of a linestring)		mean 0.4453 stdev 0.0250	

Figure: Results on the iPad 2

Conclusions

- The HaptiMap toolkit may be used to advance accessibility
- Our approach of implementing own optimized computational geometry handling is
 - Significantly faster in comparison to alternative solutions
 - Allows taking into account specific HCI needs/requirements
 - May be extended by wrapping complex functions

Finnish Geodetic Institute 16 janne.kovanen@fgi.fi

Thank you!

Finnish Geodetic Institute 17 janne.kovanen@fgi.fi